Exercise 77

(a) Suppose f is a one-to-one differentiable function and its inverse function f^{-1} is also differentiable. Use implicit differentiation to show that

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

provided that the denominator is not 0 .
(b) If $f(4)=5$ and $f^{\prime}(4)=\frac{2}{3}$, find $\left(f^{-1}\right)^{\prime}(5)$.

Solution

Part (a)
Suppose that $f=f(x)$ is a one-to-one function. Then there exists an inverse function $f^{-1}=f^{-1}(x)$.

$$
f\left[f^{-1}(x)\right]=x
$$

Differentiate both sides with respect to x.

$$
\frac{d}{d x}\left\{f\left[f^{-1}(x)\right]\right\}=\frac{d}{d x}(x)
$$

Use the chain rule.

$$
f^{\prime}\left[f^{-1}(x)\right] \cdot \frac{d}{d x}\left[f^{-1}(x)\right]=1
$$

Therefore,

$$
\frac{d}{d x}\left[f^{-1}(x)\right]=\frac{1}{f^{\prime}\left[f^{-1}(x)\right]}
$$

Part (b)
Let $f(4)=5$ and $f^{\prime}(4)=\frac{2}{3}$. Then

$$
\begin{aligned}
\left.\frac{d}{d x}\left[f^{-1}(x)\right]\right|_{x=5} & =\frac{1}{f^{\prime}\left[f^{-1}(5)\right]} \\
& =\frac{1}{f^{\prime}(4)} \\
& =\frac{1}{\frac{2}{3}} \\
& =\frac{3}{2}
\end{aligned}
$$

